Exclusive lepton pair production in pp collisions?

M. Diehl

Deutsches Elektronen-Synchroton DESY

RHIC Spin discussion, 10 August 2010

- 1. Brief introduction: GPDs and Compton scattering
- 2. Exclusive photoproduction of lepton pairs
- 3. Photoproduction in pp collisions
- 4. J/Ψ production
- 5. Summary

Generalized parton distributions in a nutshell

- ▶ GPDs \leftrightarrow matrix elements $\langle p'|\mathcal{O}|p\rangle$
 - $\mathcal{O} = \text{non-local operator with}$ quark/gluon fields

e.g.
$$ar{q}(-z) \, z_{\mu} \gamma^{\mu} \, q(z) |_{z^2=0}$$

- ▶ $p \neq p' \leadsto$ depend on two momentum fractions x, ξ and on $t = (p p')^2$, can trade for transverse mom. transfer $\Delta = p' p$
- for unpolarized partons two distributions:
 - *H* conserves proton helicity
 - ullet responsible for proton helicity flip

Introduction

Introduction

- 2. spin structure: information on orbital angular momentum li's sum rule:

$$J^q = \tfrac{1}{2} \int dx \, x \big(H^q + E^q\big) \big|_{\substack{t=0\\ \xi = 0}} \qquad J^g = \tfrac{1}{2} \int dx \, \big(H^g + E^g\big) \big|_{\substack{t=0\\ \xi = 0}}$$

 $J^{q,g} = \text{contribution from helicity and o.a.m.}$

3. combine 1 and 2:

Fourier transform of \boldsymbol{E} : shift of transverse density in transversely polarized proton

0.5 1 fm

Processes

Introduction

factorization theorems: GPDs appear in hard exclusive processes

► Compton scattering:

$$\gamma^* p o \gamma p$$
 DVCS $\gamma p o \gamma^* p$ TimelikeComptonScattering $\gamma^* p o \gamma^* p$ double DVCS

$$\begin{array}{ll} \text{in} & \ell p \rightarrow \ell \gamma p \\ \\ \text{in} & \gamma p \rightarrow \ell^+ \ell^- \\ \\ \text{in} & e p \rightarrow e \, \mu^- \mu^+ \, p \end{array}$$

Processes

Introduction

factorization theorems: GPDs appear in hard exclusive processes

Compton scattering:

$$\begin{array}{lll} \pmb{\gamma}^* p \rightarrow \gamma p & \mathsf{DVCS} & \text{in } \ell p \rightarrow \ell \gamma p \\ \gamma p \rightarrow \pmb{\gamma}^* p & \mathsf{T}_{\mathsf{imelikeComptonScattering}} & \text{in } \gamma p \rightarrow \ell^+ \ell^- \\ \pmb{\gamma}^* p \rightarrow \pmb{\gamma}^* p & \mathsf{double DVCS} & \text{in } ep \rightarrow e \, \mu^- \mu^+ \, p \end{array}$$

- ▶ light meson production $\gamma^* p \to \rho p$, πn , . . .
- ▶ heavy mesons: $\gamma p \to J/\Psi p$, Υp photo- or electroproduction

Deeply virtual Compton scattering

competes with Bethe-Heitler process at amplitude level

lacktriangle cross section for $\ell p o \ell \gamma p$

$$\frac{d\sigma_{\text{VCS}}}{dx_B dQ^2 dt} : \frac{d\sigma_{\text{BH}}}{dx_B dQ^2 dt} \sim \frac{1}{y^2} \frac{1}{Q^2} : \frac{1}{t} \qquad \qquad y = \frac{Q^2}{x_B s_{\ell p}}$$

▶ small y: σ_{VCS} dominates moderate to large y: get VCS via interference with BH \leadsto separate $\operatorname{Re} \mathcal{A}(\gamma^* p \to \gamma p)$ and $\operatorname{Im} \mathcal{A}(\gamma^* p \to \gamma p)$ \leadsto most direct connection with GPDs

Introduction

How large is "large"?

TCS

Q: which Q^2 is required for TCS to be described by parton-level calculation?

A: cannot say from theory \leadsto take Drell-Yan and $e^+e^- \to hadrons$ as phenomenological indicators

Difference between DVCS and TCS

- \triangleright at leading order in α_s : same amplitudes for DVCS and TCS (up to opposite phases)
- starting at NLO get differences (calculations are available)
- what to learn?
 - if can compare TCS and DVCS with precision
 - → detailed sensitivity to GPDs

if only rough comparison

- if cannot compare:
 - → take TCS as "substitute" for DVCS.

Difference between DVCS and TCS: analysis

$$\frac{d\sigma_{\rm TCS}}{d(\cos\theta)\,dQ^2\,dt}:\frac{d\sigma_{\rm BH}}{d(\cos\theta)\,dQ^2\,dt}\sim\frac{1}{Q^2}:\frac{1}{\sin^2\theta}\frac{1}{t}$$

$$\frac{d\sigma_{\rm BH}}{d(\cos\theta)\,d\Omega^2\,dt} \sim 1$$

$$\frac{1}{Q^2}: \frac{1}{\sin^2\theta} \frac{1}{t}$$

 $\theta = \text{polar angle of } \ell^+ \text{ in } \gamma^* \text{ c.m.}$

Difference between DVCS and TCS: analysis

$$\frac{d\sigma_{\rm TCS}}{d(\cos\theta) dQ^2 dt} : \frac{d\sigma_{\rm BH}}{d(\cos\theta) dQ^2 dt} \sim \frac{1}{Q^2} : \frac{1}{\sin^2\theta} \frac{1}{t}$$

▶ no analog of $1/y^2$ enhancement in DVCS

 $\theta = \text{polar angle of } \ell^+ \text{ in } \gamma^* \text{ c.m.}$

M.D., Berger, Pire, hep-ph/0110062

Difference between DVCS and TCS: analysis

$$\frac{d\sigma_{\rm TCS}}{d(\cos\theta)\,dQ^2\,dt}:\frac{d\sigma_{\rm BH}}{d(\cos\theta)\,dQ^2\,dt}\sim\frac{1}{\tau^2}:\left|\mathsf{GPD}(\tau)\right|^2\qquad \tau=\frac{Q^2}{s_{\gamma p}}$$

▶ for estimate take $\mathsf{GPD}(\tau) \sim q(\tau)$ \leadsto at low enough τ TCS takes over

explicitly seen for LHC kinematics in: Pire, Szymanowski, Wagner, arXiv:0811.0321 find break-even e.g. at $\sqrt{s} \sim 300\,\mathrm{GeV}$ for $Q^2=5\,\mathrm{GeV}^2,\,-t=0.2\,\mathrm{GeV}^2,\,\pi/4<\theta<3\pi/4$

Difference between DVCS and TCS: analysis

access interference term if can measure $\varphi =$ angle between hadron and lepton plane

Difference between DVCS and TCS: analysis

- \blacktriangleright access interference term if can measure $\varphi=$ angle between hadron and lepton plane
- ▶ get $\cos \varphi \sin^{-1} \theta \operatorname{Re} \mathcal{A}(\gamma p \to \gamma^* p)$ (forward-backward asy. as analog of beam charge asy. in DVCS)
- ▶ access $\operatorname{Im} \mathcal{A}(\gamma p \to \gamma^* p)$ in single spin asymmetries

(polarized γ or p)

From pp to γp

- get quasi-real photon from one proton
- \blacktriangleright in general can have γ from either proton, including interference between two cases
- \blacktriangleright ensure dominance of γ from one identified proton by selecting very small t_1 , while t_2 of "typical hadronic size"

Case without photon exchange

- get same final state with strong-interaction exchange on both sides (enhance photon by small t_1)
- ightharpoonup prod. of γ or vector meson ightharpoonup one exchange C+, other Cat high energies proposed for searching odderon exchange for J/Ψ production see Bzdak, Motyka, Szymanowski, hep-ph/0702134

Case without photon exchange

- get same final state with strong-interaction exchange on both sides (enhance photon by small t_1)
- ightharpoonup prod. of γ or vector meson \rightarrow one exchange C+, other Cat high energies proposed for searching odderon exchange for J/Ψ production see Bzdak, Motyka, Szymanowski, hep-ph/0702134
- for hadronic exchange have no factorization reinteractions suppress events with rapidity gaps diffraction at Tevatron: suppression by factor 10 and more
- ightharpoonup similar mechanism to produce χ_c , glueball, Higgs, . . . then C+ exchange on both sides dominant at high energies

Back to photon exchange

pp collisions

- ▶ small $t_1 \leftrightarrow \text{large impact parameter } b \text{ ("ultraperipheral")}$ → QCD reinteractions not important
- can check in kinematic region where photon exchange on both sides dominates

J/Ψ production

- lacksquare $\ell^+\ell^-$ not from γ^* but from J/Ψ for $M_{\ell^+\ell^-}=M_{J/\Psi}$
- done at RHIC in Au+Au:

Baltz, Klein, Nystrand, nucl-th/0205031; PHENIX arXiv:0903.2041 estimates for J/Ψ and Υ : Klein, Nystrand, hep-ph/0310223

What could RHIC contribute for $\gamma p \to J/\Psi p$?

• existing data for σ and $d\sigma/dt$ from

$$\begin{array}{lll} \text{Cornell (1975)} & \sqrt{s_{\gamma p}} = & 4.5 \, \mathrm{GeV} \\ \text{SLAC (1975)} & 6 \, \mathrm{GeV} \\ \text{FNAL E401} & 10 - 24 \, \mathrm{GeV} \\ \text{ZEUS} & 20 - 290 \, \mathrm{GeV} \\ \text{H1} & 40 - 305 \, \mathrm{GeV} \end{array}$$

RHIC: opportunity for more precise t dependence correlated with $s_{\gamma p}$ at moderate energies?

transverse target spin asymmetry calculable in GPD framework:

$$A_{UT}(\tau, t) \approx \frac{\sqrt{t_0 - t}}{m_p} \frac{\text{Im}(\mathcal{E}^* \mathcal{H})}{|\mathcal{H}|^2} \qquad \tau = \frac{M_{J/\Psi}^2}{s_{e\gamma}}$$

 $\mathcal{H}, \mathcal{E} = \text{integrals over corresponding GPDs}$

 \rightsquigarrow information on helicity-flip distribution E for gluons

also discussed for EIC, but different timline, exp'tl conditions etc

possibilities for GPD physics in γp at RHIC

- J/Ψ production: transverse target spin asy. $\to E^g$
- ▶ timelike Compton scattering: detailed access to GPDs including $E^{q,g}$ if have transv. target pol.

possibilities for GPD physics in γp at RHIC

- J/Ψ production: transverse target spin asy. $\to E^g$
- timelike Compton scattering: detailed access to GPDs including $E^{q,g}$ if have transv. target pol.

experimental requirements:

- need enough rate/detection efficiency
- ensure exclusivity
- ensure very small t_1 for one proton (probably need to tag p)
- want to measure t_2 (other proton) and $s_{e\gamma}$
- ▶ for TCS also need hadronic $(\gamma p \to \ell^+ \ell^- p)$ plane (need φ)

cannot estimate prospects without some numerical estimates